1. The k-cube is the graph whose vertices are the ordered k-tuples of 0 's and 1's, two vertices being joined if and only if they differ in exactly one coordinate.
a. Draw the 3 -cube and 4-cube.
b. Show that k-cube has $\mathrm{k} .2^{\mathrm{k}-1}$ edges, and is bipartite.
a.

b. The first proof is direct. In k-cube, each vertex has exactly k edges, therefore; each vertex could be joined to all of its neighbor vertices (that differs in exactly one coordinate). Using the fact that; there are 2^{k} vertices in k dimensional coordinate system, we have $\mathrm{k} .2^{\mathrm{k}}$ edges as a sum. However, we have counted all edges twice for both of its neighbor vertices. As a result, k-cube has totally $\mathrm{k} \cdot 2^{\mathrm{k}} / 2=\mathrm{k} \cdot 2^{\mathrm{k}-1}$ edges.

Assume that we have divided the vertices of G into subsets A and B which have the following properties. Set A has the vertices that have odd number of 1's in their k-tuples and set B has the others (that have even number of 1 's). It is always possible to divide a k-cube into two disjoint subsets like that. Since, none of the subset has dual vertices that differ in exactly one coordinate, all the edges connect one vertex from A to another vertex from B. As a result, we could always bipartite the k-tube graph.
2. Draw a tree with disjoint center and centroid, both containing two vertices.

3. The girth of G is the length of a shortest cycle in G ; if G has no cycles we define the girth of G to be infinite. Show that a k-regular graph of girth four has at least 2 k vertices.

Assume that the k-regular graph G has a girth of four and B_{i} ($\mathrm{i}=1,2, \ldots, \mathrm{k}$) are the adjacent vertices of A . Under these circumstances, dual B_{s} and $B_{t}(s, t \in i)$ could not be adjacent, because of girth requirement. Therefore, B_{s} should have k-1 more adjacent vertices $\mathrm{C}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, \mathrm{k}-1)$. As a result, we have at least $\mathrm{A}_{1}+\mathrm{B}_{\mathrm{k}}+\mathrm{C}_{\mathrm{k}-1}=2 \mathrm{k}$ vertices.

4. Find a directed minimum spanning tree for the graph on the right. Choose gray colored vertex as the root.

We will use Chu-Liu / Edmonds algorithm to solve the given directed minimum spanning tree problem.
a. Discard the arcs entering the root if any.

c. For each cycle formed: Contract the nodes in the cycle into a pseudo-node $\mathrm{k} \&$ modify the cost of arcs as
$\mathrm{c}(\mathrm{i}, \mathrm{k})=\mathrm{c}(\mathrm{i}, \mathrm{j})-[\mathrm{c}(\mathrm{x}(\mathrm{j}), \mathrm{j})-\min (\mathrm{c}(\mathrm{in}-\mathrm{cyc}$ le edges $)]$

b. Select the entering arc with the smallest cost.

d. Select the entering arc with the smallest modified cost. Replace the arc in S (to same real node) by the new selected arc.

5. Find the number of non-isomorphic spanning trees in the graph on the right.

There is no need to analyze red edges emphasized in G because they do have to be used in all non-isomorphic spanning trees. Therefore, studying with the graph on the left is isomorphic to working with the G_{0} graph given below.

We will use the recursive method that works with contraction as shown below to solve the problem.

G_{0}

G_{2}

$\mathrm{G}_{0}-\mathrm{d}: \mathrm{G}_{1}$

\qquad
\longrightarrow

$\mathrm{G}_{2}-\mathrm{e}: 4$ spanning trees

$\mathrm{G}_{0} \cdot \mathrm{~d}: \mathrm{n}^{\mathrm{n}-2}=4^{2}=16$
$+$

$\mathrm{G}_{2} \cdot \mathrm{e}: 4$ spanning trees
G_{2} has 8 non-isomorphic spanning trees. It is obvious that $\mathrm{G}_{1} \approx \mathrm{G}_{2}$.
Therefore, G_{1} has 8 non-isomorphic spanning trees too.
Then, G_{0} has $8+16=24$ non-isomorphic spanning trees. Again, it is clear that $\mathrm{G} \approx \mathrm{G}_{0}$.
As a result, there are 24 non-isomorphic spanning trees in G.

