Graph Theory and Applications Dr. Ayşegül Yayımlı

Homework 1

Beycan Kahraman 504071508

10.10.2008

1. The k-cube is the graph whose vertices are the ordered k-tuples of 0's and 1's, two vertices being joined if and only if they differ in exactly one coordinate.

a. Draw the 3-cube and 4-cube.

b. Show that k-cube has $k \cdot 2^{k-1}$ edges, and is bipartite.

b. The first proof is direct. In k-cube, each vertex has exactly k edges, therefore; each vertex could be joined to all of its neighbor vertices (that differs in exactly one coordinate). Using the fact that; there are 2^k vertices in k dimensional coordinate system, we have k. 2^k edges as a sum. However, we have counted all edges twice for both of its neighbor vertices. As a result, k-cube has totally k. $2^k / 2 = k.2^{k-1}$ edges.

Assume that we have divided the vertices of G into subsets A and B which have the following properties. Set A has the vertices that have odd number of 1's in their k-tuples and set B has the others (that have even number of 1's). It is always possible to divide a k-cube into two disjoint subsets like that. Since, none of the subset has dual vertices that differ in exactly one coordinate, all the edges connect one vertex from A to another vertex from B. As a result, we could always bipartite the k-tube graph.

2. Draw a tree with disjoint center and centroid, both containing two vertices.

3. The girth of G is the length of a shortest cycle in G; if G has no cycles we define the girth of G to be infinite. Show that a k-regular graph of girth four has at least 2k vertices.

Assume that the k-regular graph G has a girth of four and B_i (i = 1, 2, ..., k) are the adjacent vertices of A. Under these circumstances, dual B_s and B_t (s, t ϵ i) could not be adjacent, because of girth requirement. Therefore, B_s should have k-1 more adjacent vertices C_j (j = 1, 2, ..., k-1). As a result, we have at least $A_1 + B_k + C_{k-1} = 2k$ vertices.

We will use Chu-Liu / Edmonds algorithm to solve the given directed minimum spanning tree problem.

a. Discard the arcs entering the root if any.

c. For each cycle formed: Contract the nodes in the cycle into a pseudo-node k & modify the cost of arcs as

c(i,k) = c(i,j) - [c(x(j),j) - min(c(in-cycle edges))]

b. Select the entering arc with the smallest cost.

d. Select the entering arc with the smallest modified cost. Replace the arc in S (to same real node) by the new selected arc.

 G_2 has 8 non-isomorphic spanning trees. It is obvious that $G_1 \approx G_2$. Therefore, G_1 has 8 non-isomorphic spanning trees too. Then, G_0 has 8 + 16 = 24 non-isomorphic spanning trees. Again, it is clear that $G \approx G_0$.

As a result, there are 24 non-isomorphic spanning trees in G.

